
GRIT: Consistent Distributed Transactions across
Polyglot Microservices with Multiple Databases

Guogen Zhang
eBay Inc.

San Jose, USA
genzhang@ebay.com

Kun Ren
eBay Inc.

San Jose, USA
kuren@ebay.com

Jung-Sang Ahn
eBay Inc.

San Jose, USA
junahn@ebay.com

Sami Ben-Romdhane
eBay Inc.

San Jose, USA
sbenromdhane@ebay.com

Abstract—The popular microservice architecture for applica-
tions brings new challenges for consistent distributed transac-
tions across multiple microservices. These microservices may
be implemented in different languages, and access multiple
underlying databases. Consistent distributed transactions are a
real requirement but are very hard to achieve with existing
technologies in these environments. In this demo we present
GRIT: a system that resolves this challenge by cleverly leveraging
deterministic database technologies and optimistic concurrency
control protocol(OCC). A transaction is optimistically executed
with its read-set and write-set captured during the execution
phase. Then at the commit time, conflict checking is performed
and a global commit decision is made. A logically committed
transaction is persisted into logs first, and then asynchronously
applied to the physical databases deterministically. GRIT is able
to achieve consistent, high throughput and serializable distributed
transactions for any applications invoking microservices. The
demonstration offers a walk-through of how GRIT can easily
support distributed transactions across multiple microservices
and databases.

Keywords-microservice, distributed transactions, OCC, deter-
ministic

I. INTRODUCTION

Microservice architecture [1] is widely used in large-scale
cloud data platforms and application development. Microser-
vice architecture provides flexibility for application develop-
ment and reuse of fine-grained services. Microservices can
be developed by different domain teams to support business
applications. They may be implemented in various languages,
such as Java or Golang, and access multiple underlying
databases. Applications in a microservice architecture usually
require invocation of multiple microservices, which access
multiple databases. When an application invokes multiple mi-
croservices, it needs distributed transactions to make consistent
updates to underlying databases. However, how to support
consistent distributed transactions in scale-out databases is
a well-known challenge, and is even more challenging in a
microservice architecture.

It is possible that we implement some scalable distributed
transaction support with a special language, and dictate that
applications be written in this special language (such as
SQL/PSM [12]). But this will not be compatible with the
microservice architecture. In addition, there could be complex
logic in microservice and application implementation. Devel-
oping such a language is not a small effort. Furthermore, ap-

plications would have to be rewritten in such a new language,
defeating the purpose of microservice architecture.

The traditional technique is to use two-phase commit (2PC)
protocol [10] to achieve distributed transactions. Unfortunately
it does not work well in large-scale high-throughput systems,
in particular for the applications that have a lot of transaction
conflicts [2]. The reason is that locks are held during the
entire 2PC process that significantly increase the transaction
conflicts and latency. Other methods include persistent mes-
sage queue pattern for loosely coupled distributed transactions
[13], which requires some framework and application logic to
compensate failed transaction steps or even business policy to
remediate through business measures, costing business money
and impacting user experiences. Systems like Spanner [4],
YugaByte [8], FoundationDB [7] and CockroachDB [9] can
achieve distributed transactions on a single database, which
cannot be applied to cross multiple microservices.

Recently deterministic database systems Calvin [2] [3]
and FAUNADB [5] were proposed, they are able to scale
distributed transactions without 2PC protocol. The idea is that
all transactions are ordered using a global Paxos-based [6] log
before execution, then all replicas will follow this global order
to deterministically execute the transactions using determinis-
tic concurrency control protocol. If a transaction’s read/write
sets are known, then the transaction is simply put into the
global transaction log. Otherwise, it needs to send read-only
reconnaissance query that performs all the necessary reads to
discover the transaction’s full read/write set before being put
into the global transaction log. During the actual transaction
execution, the transaction might be aborted and restarted if
the “reconnoitered” read/write set is no longer valid. This is
possible because the records read in the reconnaissance phase
might be changed by other transactions.

This approach is able to achieve higher transaction through-
put because of simplified replication protocol and deadlock
avoidance. Unfortunately this approach still needs one-phase
commit for distributed transactions to gather commit/abort
decisions from all involved data shards and make the final
transaction commit/abort decision, and the locks are held
during the one-phase commit that increases the conflict con-
tention. In addition, these systems only know the commit/abort
decision during the actual execution phase which significantly
increase latency for aborted transactions.



DBTM

DB Service

Entity Service

.

.

.

LogPlayer

DBTL

writes

DB Service

Entity Service

ApplicationsApplications

GTM

GTL

DB Service

Entity Service

.

.

.

reads

writes

DB Service

Entity Service

DBTM

LogPlayer

DBTL

GTM

GTL

DB 
Shard 
Server

DB 
Shard 
Server

DB 
Shard 
Server

DB 
Shard 
Server

DB 
Shard 
Server

DB 
Shard 
Server

reads

DB 
Shard 
Server

DB 
Shard 
Server

DB 
Shard 
Server

DB 
Shard 
Server

DB 
Shard 
Server

DB 
Shard 
Server

Fig. 1. System Architecture Illustated with Two Databases

GRIT leverages some deterministic ideas, such as ordering
transactions in Paxos-based logs before execution. Similar to
reconnaissance phase in Calvin, we perform the OCC execu-
tion phase [11] which optimistically executes the transaction
logic in microservices and saves the temporary write results.
Our system is distinct from Calvin/FAUNADB in that we use
our novel deterministic conflict resolution algorithm to resolve
conflicts immediately after the OCC execution phase, then
we can know the local abort/commit decision, and perform
quick global commit coordination before persisting it into the
commit logs. Obviously GRIT can significantly reduce the
transaction latency for aborted transactions. This also indicates
that only committed transactions go to the transaction logs,
and no further execution is needed during the transaction log
execution (physical materialization). Furthermore, the log play
phase (corresponding to Calvin’s execution) becomes pretty
simple, just to apply the write operations that are already
calculated during the OCC execution phase. That’s why we
call it physical materialization of transactions.

In this demo, we showcase GRIT: a novel system that sup-
ports consistent distributed transactions across microservices
that are implemented in various languages and use multiple
underlying databases. The system is efficient and scalable,
and provides serializability for transactions across multiple
databases exposed through microservices. We use a simplified
application scenario to illustrate the challenges and solutions
we propose.

II. ARCHITECTURE AND DESIGN

We demonstrate GRIT, a system that supports distributed
transactions across microservices with multiple underlying
databases. The architecture of GRIT with two databases is
illustrated in Figure 1. The databases can be partitioned in a
scale-out deployment, which is not our focus in this demo.
The key components of GRIT include:

• GTM: Global Transaction Manager. It coordinates global
transactions across multiple databases covered by multi-
ple DBTMs. There can be one or more GTMs.

• GTL: Global Transaction Log. It represents the trans-
action request queue for a GTM. The order in a GTL
determines the relative serializability order among global
transactions. Persistence of GTLs is optional.

• DBTM: Transaction Manager at each database realm.
The conflict checking and resolution, i.e. local commit
decision, is located here. A database realm is the scope of
a database covered by this DBTM for conflict checking.
It can be a database, a shard or multiple shards of the
database (we use database to mean database realm for
simplicity). There can only be one DBTM for a database.

• DBTL: Transaction Commit Log for a DBTM at each
database. It logs logically committed transactions that
relate to this database (including single database trans-
actions and multi-database transactions). The transaction
order in a DBTL determines the serializability order in the
database system, and global transactions from GTLs are
reflected here. It is analogous to a write-ahead log (WAL)
for committed transactions in a traditional database.

• Log Player: It pushes commit log entries to their target
database shard servers for write execution. Its role is the
same as that of a log replication.

• DB Shard Servers: Deterministic database engines. Each
server uses deterministic concurrency control to material-
ize logically committed transactions concurrently. It also
need to support multi-versioning and snapshot reads for
isolation.

There are some other components in our system:
• Microservice: building blocks to provide business-

oriented service for applications to implement business
logic. Each DB may have support for multiple microser-
vices, and executions of microservices are independent
of each other.

• DB Service: Provide DB server read/write interface and
directly access DB Servers. It also caches the read/write
sets of each transaction during the execution phase and
sends them to its DBTM for conflict resolution at the
commit time. There is no limit on how many DB service
instances a system can have.

We leverage the well-known optimistic concurrency con-
trol (OCC) for execution of microservices and application
logic. And at the commit time, the system performs conflict
resolution in DBTMs and makes global commit decision in
GTMs, and orders committed transactions in DBTLs to be
materialized by the underlying deterministic databases.

The consistency of distributed transactions are guaranteed
through three phases: optimistic execution phase, logical
commit phase, and physical materialization phase, as il-
lustrated in Figure 2. Efficiency is achieved by separating
the logical commit decision from physical materialization. A
transaction is considered committed once its effect is persisted
into the transaction commit logs. And physical materialization
to the databases is out of the commit decision loop.

Now we describe the details of the three phases:
1) The optimistic execution phase: a transaction fetches



DBTM

LogPlayer

DBTL

DB Service

Entity Service

Applications

GTM

DBTL

(A) Optimistic execution phase

Reads W-set captured 
here

(B) Logical commit phase (C) Physical materialization phase

Commit Req
Local commit 
decision

Global commit 
decision

Writes

DB Shard 
Servers

DB Shard 
Servers

Fig. 2. Major components involved in each phase of a distributed transaction

and updates databases through microservices and
database services, the fetches and updates are captured
by each database service as (r-set, w-set). Note that we
also need to capture the version info (i.e. Log Sequence
Number - LSN) for each data item in the r-set for conflict
resolution.

2) The logical commit phase: At the commit time, conflict
resolution is performed by transaction managers (both
DBTMs and the GTM). If there is a conflict, the transac-
tion is aborted. Otherwise, it’s committed logically and
persisted into transaction logs (DBTLs).

3) The physical materialization phase: Databases will
materialize the transactions from the commit logs
(DBTLs) and make physical commit to the databases.

The logical commit decision is accomplished at two levels as
described below.

• At a DB level: on receiving a commit request, the
DB service agent submits the request with its local (r-
set, w-set) and meta information for the transaction to
the responsible DBTM. The DBTM performs conflict
checking based on its w-set cache of recently committed
transactions. The logic of checking conflict is similar
to that in the traditional OCC except that the DBTM
does not access DB to figure out the conflicts but uses a
cache of recent updates. If there is no conflict, it can be
locally committed. And if the transaction only involves
a single database, then the transaction’s w-set will be
appended into the DBTL log with an assigned LSN, and
the transaction is logically committed. If the transaction
involves multiple databases, the DBTM sends its local
commit decision to the GTM for the transaction, and acts
based on the response from the GTM. If there is a conflict
during conflict checking, or the global commit decision
from the GTM is “ABORT”, the transaction is aborted.
The application needs to retry.

• At global level: Commit of a transaction involving
multiple databases has to be coordinated by a GTM. On
receiving the commit request for a transaction from the
application, the GTM will wait for the involved DBTMs’
commit decisions. If all the commit decisions from the

DBTMs are “COMMIT”, the transaction can be com-
mitted. If any DBTM reports “ABORT”, the transaction
is aborted. The GTM informs the DBTMs of the global
commit decision by responding to their submissions. This
interaction is simpler than a 2PC protocol and requires
no locking in the databases.

For physical materialization phase, we leverage the de-
terministic database engines to achieve that. Under normal
conditions, the Log Player will steam log entries sequentially
to target database shard servers, and transaction writes are
deterministically executed following the transaction order in
the DB level transactions logs (DBTLs). Under abnormal
conditions when the updates cannot be performed(hardware
errors, software crash etc), recovery has to be performed on the
particular shard server and we can leverage the deterministic
recovery algorithm which is much simpler than traditional
algorithms.

It is worth noting that conflict checking at a DBTM is suffi-
cient with the cache of w-sets from all the recently committed
transactions, as long as all the updates go through the same
DBTM for the covered scope of the database. The goal of con-
flict checking is to see if there is any other transaction that has
changed an entry since the transaction read it. A transaction
reads from DB servers directly in the OCC execution phase,
which include all the commits from transactions up to the
last log entry that has been materialized at the time of reads.
Each database maintains the Last Commit LSN for itself. The
Last Commit LSN is remembered for a transaction when it
starts read, called transaction’s Read LSN on this database.
A transaction only needs to check those w-set entries cached
after its Read LSN for its r-set entries. If there is none, that
means all reads are fresh and the transaction can be committed.
A cached w-set entry is only useful if there is a transaction
that would potentially conflict with it, thus can be purged if
its LSN is less than the oldest Read LSN (Oldest Read LSN)
of inflight transactions on the database.

Various read isolation levels can be provided. Each log LSN
defines a logical snapshot for the database. Local snapshot
reads can be supported by given a specific LSN for each
database. Strongly consistent read at a global consistent snap-
shot can be provided by registering a read-only transaction
through a GTM, and the GTM can request LSNs from involved
DBTMs for a consistent snapshot across multiple databases.
We do not expand this flow here. For a read-modify-write
transaction, it always reads the latest committed data.

III. DEMONSTRATION SCENARIOS

We demonstrate the system by a simple simulated applica-
tion involving purchasing items on an ecommerce website on
the server side. The application takes an order that contains a
list of (item, quantity) to purchase, and calls two microser-
vices: one is ItemService, which will maintain the listing
items and their inventories, the other is OrderService, which
will create orders. Microservices are illustrated by two gRPC
services: ItemService and OrderService. To illustrate polyglot
microservices, we use two different languages to implement



Fig. 3. Screenshot of a demo window

the two services. The ItemService is implemented with Java,
and talks to the service from the database for Items. The
OrderService is implemented with Golang, and talks to the
service from the database for Orders. The database services are
gRPC services implemented using C++. They implement part
of OCC logic to capture the (r-set, w-set) for each database for
a distributed transaction. They also take transaction log entries
and deliver them to the underlying DBMS to materialize.

The application is simulated by a CLI in a terminal that
calls microservices within a transaction as many times as
needed for items, and then creates an order before commit.
A screenshot of the application window is shown in Figure
3. Demo users are able to edit the sample CLI scripts to
customize the simulated application data and issue transactions
from a terminal.

Another terminal will display information for the GTM cur-
rent transaction requests for commit. And two other terminals
will display information for DBTMs, i.e. transactions and their
(r-set, w-set)s from database services and commit status for
each database.

To increase concurrency, we will also demonstrate randomly
generated transactions from the simulated application sub-
mitted from multiple terminals in parallel. We also plan to
show the transaction latency and throughput based on different
loads.

IV. NOVELTY AND CONTRIBUTIONS

It is very hard to support distributed transactions efficiently
and that is why many NoSQL database systems don’t support
distributed transactions, such as Amazon’s Dynamo [14],
CouchDB [15], Cassandra [16], Bigtable [17] and Azure [18].
However, reducing transactional support results in increased
code complexity and development efforts for applications.

We have proposed a novel system to support distributed
transactions across microservices involving multiple underly-
ing databases in a scalable setting. It abstracts a transaction
with (r-set, w-set) as in OCC transactions and combines many
ideas from existing techniques but avoid their shortcomings.
Overall it employs logical transaction commit logs and lever-
ages deterministic underlying database engines for perfor-
mance and scalability. For coordination across databases, we

use a mechanism similar to 2PC but apply at logical commit
phase, which avoids longer duration. After a transaction is
committed logically, they are materialized by the deterministic
databases, which are typically scale-out deployment. The
logical commit logs are replicated and can replace physical
log-based replication.

The key for the scalability and performance is the tech-
niques to avoid coordination during execution phase as well
as transaction materialization (physical commit) that are of
relatively longer duration. The coordination is at the commit
time for conflict resolution that is of short-duration and fast.
2PC-like protocol is only used for cross database transactions,
and unlike traditional 2PC where the involved databases typi-
cally need to lock the relevant data records during the protocol
playout, GRIT doesn’t require expensive locking during the
protocol. In addition, the coordination is only needed when
a transaction truly impacts multiple databases, and single-
database transactions only need to go to its local database
transaction manager. Deterministic database servers simplify
concurrency control and speed up commit materialization pro-
cess. GRIT is a perfect use of deterministic database engines,
which require known (r-set, w-set) to perform deterministic
transaction scheduling.

Furthermore, GRIT is able to avoid the implementation of
a procedure language (something like PL/SQL, or SQL/PL),
which would be a huge undertaking, and the microservice logic
itself doesn’t need to be changed.

REFERENCES

[1] https://en.wikipedia.org/wiki/Microservices
[2] Thomson, Alexander and Diamond, Thaddeus and Shao, Philip and Ren,

Kun and Weng, Shu-Chun and Abadi, Daniel J, “Calvin: Fast distributed
transactions for partitioned database systems”, SIGMOD 2012.

[3] Kun Ren, Alexander Thomson, Daniel Abadi, “An Evaluation of the
Advantages and Disadvantages of Deterministic Database Systems”,
VLDB 2014.

[4] J. C. Corbett et al, “Spanner: Google’s Globally-Distributed Database”,
In Proc. of OSDI 2012.

[5] https://fauna.com/.
[6] L. Lamport. Paxos made simple. In SIGACT News, Vol. 32, No. 4, pp.

51-58, 2001.
[7] https://www.foundationdb.org/ .
[8] https://www.yugabyte.com/.
[9] https://www.cockroachlabs.com/.

[10] C. Mohan, Bruce Lindsay and R. Obermarck, “Transaction management
in the R* distributed database management system” ACM Transactions
on Database Systems (TODS), Volume 11 Issue 4, Dec. 1986, Pages
378 - 396.

[11] H.T.Kung, J.T.Robinson, “On Optimistic Methods for Concurrency
Control”, ACM Transactions on Database Systems 6:2, June, 1981.

[12] https://www.iso.org/standard/29864.html.
[13] Pat Helland, “Life beyond Distributed Transactions: an Apostate’s Opin-

ion”, CIDR 2007.
[14] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati et al, “Dynamo:

Amazon’s highly available key-value store”, SIGOPS, 2007
[15] J. C. Anderson, J. Lehnardt, and N. Slater, “CouchDB: The Definitive

Guide”, 2010.
[16] A. Lakshman and P. Malik, “Cassandra: structured storage system on a

p2p network”, In PODC, 2009.
[17] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh et al, “Bigtable: a

distributed storage system for structured data”, In OSDI, 2006.
[18] D. Campbell, G. Kakivaya, and N. Ellis, “Extreme scale with full sql

language support in microsoft sql azure.”, In SIGMOD 2010.


