
Jungle: Towards Dynamically Adjustable Key-Value Store
by Combining LSM-Tree and Copy-On-Write B+-Tree

Jung-Sang Ahn Mohiuddin Abdul Qader Woon-Hak Kang Hieu Nguyen
Guogen Zhang Sami Ben-Romdhane

eBay Inc.

Abstract
Designing key-value stores based on log-structured merge-
tree (LSM-tree) encounters a well-known trade-off between
the I/O cost of update and that of lookup as well as of space
usage. It is generally believed that they cannot be improved
at the same time; reducing update cost will increase lookup
cost and space usage, and vice versa. Recent works have
been addressing this issue, but they focus on probabilistic
approaches or reducing amortized cost only, which may not
be helpful for tail latency that is critical to server applications.
This paper suggests a novel approach that transplants copy-
on-write B+-tree into LSM-tree, aiming at reducing update
cost without sacrificing lookup cost. In addition to that, our
scheme provides a simple and practical way to adjust the
index between update-optimized form and space-optimized
form. The evaluation results show that it significantly reduces
update cost with consistent lookup cost.

1 Introduction
Lots of modern key-value stores use LSM-tree [17] due to
its high write throughput and acceptable read performance.
It is commonly implemented as a leveled index structure,
where each level consists of multiple sorted runs (a.k.a. sorted
string tables – SSTables [7]). Incoming updates are buffered
in memory and then merged into sorted runs at the topmost
level. There is a capacity limit of each level, and the limit
increases exponentially over levels. Once a level becomes
full, some sorted runs in that level are merged (or compacted)
into the overlapping sorted runs in the next level. Since all
disk I/Os during merge are fully sequential, LSM-tree has
much better write performance than B+-tree.

However, the amount of actual writes for a single merge
operation is huge compared to the size of actual data to be
merged, as all affected sorted runs in the next level are rewrit-
ten in an out-of-place update manner. As merge keeps hap-
pening throughout the entire lifetime of LSM-tree, the cost of
merge has a great impact on not only the amount of disk I/O
but also CPU usage. One of recent optimizations for reducing
merge overhead is tiering [10, 11, 15, 19], which defers merg-

ing and instead maintains a stack of multiple sorted runs for
the same key range in the same level. Since it does not rewrite
existing sorted runs, we can reduce the overall update cost.
Instead, the space occupied by the index will increase as much
as deferred merges, since there will be duplicate sorted runs
for the same key range. Moreover, lookup cost also increases
due to visiting more sorted runs to find the given key. As a
result, it introduces a three-dimensional relationship between
update cost, lookup cost, and space cost [4, 5].

To moderate update cost without degrading lookup cost,
this paper suggests a new LSM-tree approach Jungle, which
replaces each sorted run with copy-on-write (CoW) B+-
tree [6, 8, 9, 13, 20] that stores keys and values separately [2,
3, 14]. When a new write batch of key-value pairs comes in,
Jungle sorts it by the key, appends the values to the end of the
B+-tree file, and then appends the updated nodes which store
only the keys and references to their values. Separating keys
and values is an important enabler for our target use cases,
where values are much larger than keys.

Since multiple batches are accumulated in a chronological
order, Jungle has many similarities to the stack of sorted runs
in tiering. The biggest difference from existing tiering is the
fact that the lookup cost of CoW B+-tree is not affected by the
number of batches (i.e., sorted runs) appended to the tree; we
do not need to visit multiple sorted runs for a single lookup.
It makes tiering more flexible so that we can break free from
the limit on the number of sorted runs in a stack.

Due to its append-only characteristics, CoW B+-tree re-
quires periodic compaction task which merges all appended
batches and then rewrites the entire B+-tree in a sorted order.
By adjusting the frequency of this compaction, we can easily
tune LSM-tree; if compaction happens less frequently, CoW
B+-tree will have more batches so that overall update cost
will decrease, but instead it will have increased space cost.
More frequent compaction will reduce the space cost but the
update cost will be close to that of the original LSM-tree. Note
that lookup cost will remain almost the same regardless of
the frequency. The experimental results show that Jungle can
adjust update cost and space cost according to compaction

0-99

0-50 51-99

0-27 28-52 53-80 81-99

L0

L1

L2

Before merge 0-99

51-99

0-19 20-36 53-80 81-99

After merge

37-52

L0

L1

L2

Sorted run

(a) Leveling merge (T = 2)

0-92
5-99

5-50
0-39

60-99
51-92

0-27 28-52 60-80
53-75

81-99

L0

L1

L2

0-92
5-99

60-99
51-92

0-27 28-52 60-80
53-75

81-99

L0

L1

L2
0-26 30-50

Before merge After merge

Stack
Sorted run

(b) Tiering merge (T = 2)

Figure 1: Examples of LSM-tree merge.

frequency, without sacrificing the lookup cost.

2 Background
2.1 LSM-Tree Merge and Trade-Offs
The basic LSM-tree merge operation is commonly referred to
as leveling, as described in Figure 1(a). Each box indicates a
sorted run, and the number in the box denotes its key range.
L0, L1, and L2 mean each level, and boxes in red and green
background represent sorted runs to be merged and sorted
runs as a result of merge, respectively.

Once a level becomes full, it picks a victim sorted run in
that level (i.e., 0-50 in L1), and then finds all sorted runs in
the next level whose key range is overlapping (i.e., 0-27 and
28-52 in L2). After doing merge sort, new sorted runs are
written in the next level and the previous sorted runs in each
level are removed. There is a size limit of a single sorted
run, and a sorted run that exceeds the size limit needs to
be split. Hence, the next level may have more sorted runs
after merge due to the increased number of keys. Since it
rewrites all overlapping sorted runs in the next level, the ratio
between the size of original data to be merged and the amount
of data actually written, called write amplification, will be
proportional to the size ratio between each level. If the size
of level l +1 is T times bigger than that of level l, the write
amplification of a merge operation will be T , when keys are
uniformly distributed.

Figure 1(b) represents tiering merge. Outer box indicates
a stack of sorted runs within the same key range. The upper
run is newer than lower runs, and they can have duplicate
keys. There is a limit of the number of runs in a stack, and
maintained up to T runs. When a stack becomes full, T runs
in the victim stack (i.e., 0-39 and 5-50) are merged, split, and
then added to stacks in the next level (i.e., 0-26 and 30-50).
Since it does not rewrite existing runs in the next level, the
write amplification of a merge operation gets much smaller.
Instead, the ratio between the space occupied by the entire
index and the actual live data size, called space amplification,
will be increased up to T times more than that of leveling, and
lookup cost will be up to T times worse as well.

Modern LSM-trees improve lookup performance by main-
taining a Bloom filter [15,16] which is used to quickly reduce
the set of sorted runs that need to be examined during a lookup.

A’

C’

E’

A

B C

D E F

D E F B C A

A

B C

D E F

D E F B C A E’ C’ A’

Logical

Flattened

Live node

Stale node

(a) Updating node E. Instead of overwriting E, append the up-
dated node E’. It requires the update of parent nodes C and A,
and appends C’ and A’ as well.

10
A

15
B

27
C

50
D

10 2715 50
· · · ·

15
E

27
F

32
G

10 2715 32
· · · ·

50
·

Write batch

B+tree node with
key x, y, and z

x
·

x
K K: value of key x

10
A

15
B

27
C

50
D

10 2715 50
· · · ·

Write batch Write batch

y
·

z
·

Set {15, E}, {27, F}, and {32, G}

(b) Set key-value pairs {15,E}, {27,F}, and {32,G} in batch. Ap-
pend the value part (i.e., E, F, and G) first, and then append the entire
B+-tree node with updated references. It involves copying existing,
but not updated keys in the same node: 10 and 50.

10
A

15
B

27
C

50
D

10 2715 50
· · · ·

15
E

27
F

32
G

10 2715 32
· · · ·

50
·

Write batch Write batch

50
I

15
H

10 2715 32
· · · ·

50
·

Write batch

10 2715 32
· · · ·

50
·

10
A

15
H

27
F

32
G

50
I

(c) Compaction. All values as well as B+-tree nodes are
rewritten in a key order.

Figure 2: Examples of copy-on-write B+-tree.

Bloom filters can return false positives, so the tail latencies
such as the 99-th or the 99.9-th percentiles are still influenced
by the number of levels and stack sizes.

2.2 Copy-On-Write B+-Tree
Copy-on-write (or append-only) B+-tree is a variant of B+-
tree which handles incoming updates in an out-of-place up-
date manner, as illustrated in Figure 2(a). Once a node E is
updated, the modified new node E’ is appended to the end of
the file instead of overwriting E. Since the location of the node
has been changed, the update should be cascaded from leaf to
root. As a result, its parent nodes C and A are also updated to
C’ and A’, respectively.

Since appending all nodes from leaf to root for every key-
value update is too expensive, CoW B+-trees usually append
updates in batch, which reduces write amplification a lot. A
common optimization to decrease write amplification further
is decoupling values from B+-tree leaf nodes [2, 3]: append
the contents of values outside the B+-tree node first, and put
the pairs of key and reference to its value (i.e., byte offset)
into leaf node, as shown in Figure 2(b). If 1) each write batch
contains enough number of key-value pairs and 2) the sizes
of values are sufficiently bigger than keys, the additional cost
of copying B+-tree nodes will be small compared to the cost
of appending the entire write batch.

Once the space usage of data referred to by CoW B+-tree
exceeds a certain threshold, it triggers a compaction task
which iterates the tree in a key order, copies latest key-value

0-92
5-99

5-50
0-39

60-99
51-92

0-27 28-52 60-80
53-75

81-99

L0

L1

L2

Stack
Sorted run

(a) Tiering LSM-tree

5-990-92

5-50 0-39 51-9260-99

L0

L1

CoW B+tree
Write batch

0-27 28-52 60-80 53-75 81-99L2

(b) Jungle

Figure 3: Tiering LSM-tree and corresponding Jungle.

pairs to new space, constructs a new B+-tree in a bottom-
up manner, and then finally removes the previous tree, as
described in Figure 2(c).

3 Jungle: Planting LSM-Tree and Copy-On-
Write B+-Tree Together

To address the goals outlined in the introduction, we propose
Jungle, which is a hybrid LSM-tree approach where sorted
runs are replaced by CoW B+-trees. Since a CoW B+-tree
can contain multiple write batches in a chronological order, it
shares a number of common features with a stack of sorted
runs in tiering, if all write batches are locally sorted. Hence,
Jungle can be treated as a variant of tiering merge as described
in Figure 3. Each CoW B+-tree in Jungle is corresponding
to the stack of sorted runs in tiering LSM-tree, where each
sorted run in a stack matches up with each write batch in a
CoW B+-tree.

One big benefit of using CoW B+-tree is lookup cost. In
tiering LSM-tree, the lookup cost is roughly proportional to
the size of stack (i.e., the number of sorted runs in a stack)
as it should search each sorted run until it finds the given
key. Suppose that the maximum number of keys that a single
sorted run can contain is R and there are T runs in a stack, the
lookup cost per level is O(T logR). Even with bloom filter,
the stack sizes directly affect the possibility of false positives,
which is one of reasons why there is a limit on the maximum
number of sorted runs in a stack: usually T .

However, the lookup cost of a CoW B+-tree is solely af-
fected by the total number of unique keys in the tree, re-
gardless of the number of write batches. If T different write
batches in a tree have duplicate keys so that there are R unique
keys, the lookup cost per level will be O(logR). If all keys
in T write batches are unique, the lookup cost per level in-
creases to O(log(T · R)) = O(logT + logR), which is still
significantly smaller than that of tiering, as T is a very small
constant number compared to R. Consequently, it enables us
to have the flexible number of write batches while keeping
nearly the same lookup cost as in leveling merge: O(logR)
per level. This approach is orthogonal to Bloom filter, which
we can still use to improve read performance.

Jungle has two types of merge operations: in-place merge
and inter-level merge. In-place merge is the same as CoW
B+-tree’s compaction, while inter-level merge is identical to
the tiering merge of LSM-tree. Figure 4 depicts the examples
of Jungle merge operations with the victim CoW B+-tree in
L1, containing write batches 5-50 and 0-39 in Figure 3(b).

5-990-92

0-50

L0

L1

L2 0-27 28-52 60-80 53-75 81-99

51-9260-99

(a) After in-place merge

5-990-92L0

L1

0-27 28-52L2 0-26 30-50 60-80 53-75 81-99

51-9260-99

(b) After inter-level merge

Figure 4: Jungle merge operations.

Tiering LSM-tree Jungle

Stack
Sorted run / write batch

CoW B+tree

…

…

Up to
T runs

Can append more than T batches

Figure 5: Merge threshold comparison when the sizes of
sorted runs are not even.

An advantage of CoW B+-tree over the original tiering is
that we can easily get the total number of unique keys (i.e., the
latest version of key-value pairs) and their space usage (i.e.,
the space occupied by those pairs) without causing extra I/O.
If the space occupied by unique key-value pairs is smaller than
the size limit of the level, the level is not full yet, so merging
them into the next level is not necessary. In such case, we
trigger an in-place merge so that the victim CoW B+-tree
is compacted without affecting other trees, as presented in
Figure 4(a). If the actual data size exceeds the limit of the
level, then an inter-level merge will be invoked. It iterates
the victim CoW B+-tree and appends new write batches into
proper CoW B+-trees in the next level. Figure 4(b) describes
the outcome of inter-level merge, where the overall shape is
the same as the result of tiering merge in Figure 1(b).

Merge Frequency The compaction threshold of CoW B+-
tree C is defined as the ratio between the amount of space
occupied by the tree including the stale data and the size of
the live data. If C = 3, an in-place merge will be triggered
when the space usage of a CoW B+-tree and its data becomes
bigger than 3x of the size of its live key-value pairs. That
is similar to triggering merge upon 3 sorted runs in tiering
LSM-tree. Even before reaching the threshold, an inter-level
merge may happen if the total size of the level exceeds the
limit, which is C times bigger than the limit in leveling.

Having threshold in terms of size has much more benefits
than that in terms of the number of sorted runs. In tiering,
the number of sorted runs is strictly limited to T , and merge
happens regardless of the actual size of sorted runs. If the
average size of runs in a stack is smaller than its limit S,
merge will happen earlier than that of Jungle with C = T , as
Jungle will trigger merge upon the actual size limit, i.e., C ·S.
In Jungle’s perspective, neither the size of individual write
batch nor the total number of write batches in the tree matters;
thus it can accommodate more write batches if their average
size is smaller than S, as illustrated in Figure 5.

As a result, the total number of merges invoked in tiering
will be the same as that in Jungle with C = T , only when
all sorted runs are evenly sized to S. Otherwise, tiering will
likely have more merges than Jungle, which will increases the

Table 1: Cost comparison.

Point (w/ Bloom filter) Range Write amplification Space amplification
Leveling O(L · logR) O

(
(1+ p ·L) logR

)
O(L) O(L ·T) O

(T
T−1

)
Tiering O(L ·T · logR) O

(
(1+ p ·L ·T) logR

)
O(L ·T) O(L) O

(T 2

T−1

)
Jungle O

(
L(logC+ logR)

)
O
(
(1+ p ·L)(logC+ logR)

)
O(L) O

(
(L+ 1

C)(1+Bw)
)

O
(C·T

T−1 (1+Bs)
)

overall write amplification. The merge frequency gap between
tiering and Jungle gets bigger with more skewed incoming
data. Under non-uniform key distribution, there will be a num-
ber of cold stacks whose keys are updated rarely and sparsely.
Most likely those stacks are filled up with small sorted runs
and contribute to the increasing of write amplification.

Making matters worse, although we put uniform random
data, the actual size distribution of sorted runs is not even
in practice. It is influenced by various factors such as key
range partitioning in a level, victim stack selection policy, or
probabilistic problems like balls into bins [18].

Note that the reason why tiering cannot allow more than T
runs to avoid such issues is because of lookup performance:
more runs will make the lookup cost more expensive. In
addition, tiering cannot reduce the size limit of a stack to
be less than T either, due to the aforementioned small run
issue. Suppose that the stack limit is M runs, where M < T .
Assuming the ideal case where the size of each run before
merge is S, and given that the key range of a stack in level l is
overlapping with T stacks in the next level l +1, the merge
will generate T runs whose size is M·S

T each. Since M < T ,
new runs become smaller than old runs, and accordingly it
will make tiering invoke merge even more frequently. Hence,
the number of sorted runs in a stack in tiering should be the
same as the size ratio between adjacent levels, which is T .

In Jungle, the compaction threshold of CoW B+-tree C
is easily adjustable, as it hardly influences the lookup per-
formance. In other words, we can use it as a tunable knob
between update cost and space cost. With smaller C, merge
will happen more frequently so that the space cost will be
reduced. If we increase the value of C, it makes merge less
frequent and accordingly the overall update cost will decrease.
There are multiple options for setting threshold: 1) a single
global value, 2) vertically different values per level, and 3)
horizontally different values per key range according to work-
load patterns and locality. In this paper, we only cover the
first option, and will explore the potential improvements by
the second and third options in the future.

Cost Analysis Table 1 summarizes the cost of each opera-
tion in leveling, tiering, and Jungle. R means the maximum
number of keys that a single sorted run can contain, and L
denotes the number of levels in LSM-tree. p indicates the
false positive rate of Bloom filter: p = (1− e−

kn
m)k [16]. m

and n denote the number of bits in Bloom filter and the total
number of keys, while k indicates the number of hash func-
tions. With n

m = 1
10 and k = 3, p is around 1.7%. We assume

that the same values of n
m and k are used for all levels. Since

leveling and tiering have been analyzed well [10–12, 15], we
omit their derivation details here.

In Jungle, the point lookup cost is basically identical to
that in leveling, except for the number of keys in each CoW
B+-tree: up to C ·R keys at worst. The range lookup cost
will remain the same, as it is not affected by the height of
B+-tree. Both write and space amplification are influenced by
the compaction threshold C. If C = T , they become very close
to those of tiering, except for Bw and Bs, which represent the
extra write and space overhead of CoW B+-tree nodes.

Suppose that the average size of values is V and that of
key and reference pairs in B+-tree node is K. For each write
batch containing R key-value pairs, we first append a set of
values which is R ·V big, and then append a set of B+-tree
nodes whose size is roughly R ·K. Hence, the value of both Bw
and Bs will be R·K

R·V = K
V . However, in the worst-case scenario

that all keys in C batches are unique, the size of existing
CoW B+-tree nodes before appending a new batch will be
C ·R ·K. We may need to rewrite all those nodes for a single
batch append, and accordingly the value of Bw and Bs will be
increased to C·K

V . With V =1 KB, K =16 bytes, and C = 10,
they will be ranged between 0.016 and 0.16. Those values are
usually smaller than 1 when keys are smaller than values, as
mentioned in Section 2.2.

With smaller C, the space cost of Jungle becomes close
to that of leveling. However, the write amplification still re-
mains much smaller than leveling since Jungle just appends a
new write batch to existing CoW B+-tree, except for in-place
merge. Most likely in-place merge will happen at the last level,
where all keys are eventually settled down. Write batches for
the last level will probably contain keys that already exist, so
that we may trigger in-place merge after appending C write
batches. Hence, C mostly affects the frequency of in-place
merge. This is one of benefits of Jungle as we can maintain
the value of C smaller than T , which results in less space
usage than tiering while keeping similar write amplification.

4 Evaluation
We evaluate Jungle to see if it efficiently adjusts write and
space amplification according to its compaction threshold C,
with minimum lookup performance degradation. Jungle is
implemented as a stand-alone library embedded in eBay’s
home-grown distributed server platform, which is used for
multiple difference services. There are internal options to
run itself in pure LSM leveling or tiering mode, so that we

6
18

 0
 2
 4

Leveling
C=2

C=3
C=5

C=10
Tierin

g

W
rit

e
am

pl
ifi

ca
tio

n

(a) Write amplification

 0
 2
 4
 6
 8

 10

Leveling
C=2

C=3
C=5

C=10
Tierin

g

Sp
ac

e
am

pl
ifi

ca
tio

n

(b) Space amplification

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

Leveling
C=2

C=3
C=5

C=10
Tierin

gN
or

m
al

iz
ed

 th
ro

ug
hp

ut

(c) Point lookup throughput

 0

 5

 10

 15

Leveling
C=2

C=3
C=5

C=10
Tierin

g

N
or

m
al

iz
ed

 la
te

nc
y

p50
p99

p99.9
p99.99

(d) Tail latencies of point lookup

Figure 6: Evaluation results, C=x denotes Jungle with compaction threshold x. The throughput and latencies of point lookup are
normalized to the throughput and the 50-th percentile latency of leveling, respectively.

compare the costs of each mode with Jungle. In this paper, we
do not measure the overall performance against widely used
key-value stores such as RocksDB [1], as they include a num-
ber of optimizations that are orthogonal to the improvement
of Jungle over the original leveling and tiering schemes.

The evaluation was performed on Dell T7820, equipped
with Samsung 860 QVO 1 TB SSD, formatted using the Ext4.
We initialize each key-value store with 20 million random
records, whose key and value size are 8 bytes and 1,024 bytes
on average, so that the total space usage is expected to be
ranged from 22 GB (leveling) to 222 GB (C=10 or tiering). To
minimize the effect of OS page cache, we limit the available
RAM size to 2.5 GB. Level size ratio T and the size of level-0
are set to 10 and 256 MB, respectively. The size limit of each
sorted run is 64 MB, and the size of Bloom filter is set to 10
bits per key. CoW B+-tree node size is set to 4 KB. After
initial load, we randomly issue more than 400 million update
operations so that the entire records are updated at least 20
times. We believe the enough number of merge operations
happen during the evaluation.

We first plot the write amplification of each scheme in
Figure 6(a). The original leveling shows the highest write
amplification, as it always rewrites all overlapping sorted runs
during merge. By contrast, the write amplification of tiering is
almost 4 times smaller than leveling. Jungle has similar write
amplification to tiering, and it increases as C gets smaller. A
notable fact is that the write amplification of Jungle is more
than 3 times smaller than that of leveling, even with C=2. This
is because C most likely affects the in-place merge frequency
of the last level, as explained in Section 3.

Figure 6(b) illustrates space amplification. Since space
usage fluctuates over time, we measure the average number
as well as the maximum and minimum numbers. Leveling
has the smallest space usage which is close to 1.2 times of the
original working set size. The space amplification of tiering is
expected to be 11.1, but the actual measured number is much
smaller than that: 3.24 on average. There are two reasons
why it happens. Firstly, merge cannot happen on all stacks at
the same time, so that some stacks are full while others are
not. Thus the average stack size is always smaller than the
maximum size. Secondly, the size of sorted runs in a stack is
not even in practice, as we mentioned in Section 3. Eventually

it cannot fully utilize the space capacity, and merge operations
are triggered more often, thus we observe tiering shows bigger
write amplification than that of even C=5.

On the other hand, Jungle’s space amplification range is
more predictable, even with the same merge timing and victim
policy. That is because its compaction threshold is based on
the actual data size ratio, not the total number of write batches
in a CoW B+-tree.

Next, we randomly invoke point lookup on those aged
indexes, and measure the throughput and latencies as shown in
Figure 6(c) and Figure 6(d), respectively. No write operation
is performed during read, to get pure latency without any
impact on sharing I/O bandwidth or lock contention. Even
though there are up to 10 times more sorted runs to visit,
the point lookup throughput of tiering is only 30% worse
than that of leveling, by help of Bloom filter. On the contrary,
Jungle shows even better performance than leveling. Since
the capacity of each level in Jungle is bigger than that in
leveling, more key-value pairs can be found in upper level
and then returned earlier, and consequently it improves the
read performance slightly.

Unlike throughput, Bloom filter can barely help reducing
tail latencies; the 99-th percentile latency of tiering is 3 times
higher than that of leveling. Jungle keeps showing compara-
ble latencies regardless of the value of C, as CoW B+-tree
provides nearly the same lookup performance no matter how
many write batches are in the tree.

5 Conclusion
This paper presents Jungle, a hybrid approach by combining
LSM-tree and CoW B+-tree. The main objective of Jungle is
to cut off the relation between update cost and lookup cost,
so as to make the index of key-value store more flexible for
optimizing. Our evaluation results show that the write and
space amplification of Jungle can be easily tuned by adjusting
the compaction threshold of CoW B+-tree, with the minimum
impact on lookup cost.

Acknowledgments
We would like to thank our shepherd Peter Macko and the
anonymous reviewers for their invaluable comments.

Discussion Topics
Chances of LSM-tree deformation Jungle shows the fea-
sibility of breaking LSM-tree’s limits, which have been
strictly bounded by the relationship between lookup cost, up-
date cost, and space cost. By eliminating the lookup cost from
the trade-offs, it provides new chances of tackling existing
design problems. For instance,

• The reason why LSM-tree implementations have been
maintaining multiple levels, despite of the read perfor-
mance degradation compared to B+-tree, is to keep the
ratio between adjacent levels T constant. Fewer levels
make T bigger, which results in higher write amplifica-
tion.

• LSM-tree approaches have been passive about adopting
different merge policies for hot/cold separation, under
non-uniform workloads. Deferring merge for hot key
range may incur augmented lookup cost of the same
range.

We can re-think such fundamentals.

Limitations There are potential limitations we need to
study more.

• Range lookup. If there are a number of tiny write
batches in a CoW B+-tree, the access pattern will be
more random which results in range lookup degradation.
We believe less than T batches will be fine by help of
readahead.

• Long keys. Longer keys make Bw and Bs values bigger.
We may use variants of CoW B+-tree [2] to moderate
this overhead.

State-of-the-art approaches In Dostoevsky [11] paper,
Dayan et al. have suggested an approach about setting the
size limit of stack in each level differently. Since the last level
has a dominant impact on the cost of update and space, we
can reduce the overall cost by setting the stack size of the last
level smaller. They also have proposed a model to find optimal
stack size of each level, which is similar to their precedent
paper Monkey [10] that explores the optimal ratio of Bloom
filter size across each level. These schemes are orthogonal to
Jungle as the stack size limit can be translated to compaction
threshold in Jungle. We can use the same approach to reduce
operation costs further.

PebblesDB [19] has been proposed for key-range partition-
ing policy of tiering merge, where it calls the boundary of
stack key range as Guard. Jungle may adopt its approach for
creating or splitting CoW B+-trees efficiently, to avoid key
range skew that may cause superfluous merging.

References

[1] RocksDB: A persistent key-value store for fast storage
environments. https://rocksdb.org/.

[2] Jung-Sang Ahn, Chiyoung Seo, Ravi Mayuram, Rahim
Yaseen, Jin-Soo Kim, and Seungryoul Maeng. Forestdb:
A fast key-value storage system for variable-length
string keys. IEEE Transactions on Computers (TC),
65(3):902–915, 2016.

[3] J Chris Anderson, Jan Lehnardt, and Noah Slater.
CouchDB: The Definitive Guide: Time to Relax.
"O’Reilly Media, Inc.", 2010.

[4] Manos Athanassoulis and Stratos Idreos. Design trade-
offs of data access methods. In Proceedings of the 2016
International Conference on Management of Data (SIG-
MOD), pages 2195–2200. ACM, 2016.

[5] Manos Athanassoulis, Michael S Kester, Lukas M Maas,
Radu Stoica, Stratos Idreos, Anastasia Ailamaki, and
Mark Callaghan. Designing access methods: The rum
conjecture. In EDBT, volume 2016, pages 461–466,
2016.

[6] Jeff Bonwick, Matt Ahrens, Val Henson, Mark Maybee,
and Mark Shellenbaum. The zettabyte file system. Tech-
nical report, 2003.

[7] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C
Hsieh, Deborah A Wallach, Mike Burrows, Tushar Chan-
dra, Andrew Fikes, and Robert E Gruber. Bigtable: A
distributed storage system for structured data. ACM
Transactions on Computer Systems (TOCS), 26(2):4,
2008.

[8] Shimin Chen and Qin Jin. Persistent b+-trees in non-
volatile main memory. Proceedings of the VLDB En-
dowment, 8(7):786–797, 2015.

[9] Sailesh Chutani, Owen T. Anderson, Michael L. Kazar,
Bruce W. Leverett, W. Anthony Mason, Robert N. Side-
botham, and Transarc Corporation. The episode file
system. pages 43–60, 1992.

[10] Niv Dayan, Manos Athanassoulis, and Stratos Idreos.
Monkey: Optimal navigable key-value store. In Pro-
ceedings of the 2017 ACM International Conference on
Management of Data (SIGMOD), pages 79–94. ACM,
2017.

[11] Niv Dayan and Stratos Idreos. Dostoevsky: Better space-
time trade-offs for lsm-tree based key-value stores via
adaptive removal of superfluous merging. In Proceed-
ings of the 2018 International Conference on Manage-
ment of Data (SIGMOD), pages 505–520. ACM, 2018.

https://rocksdb.org/

[12] Stratos Idreos, Niv Dayan, Wilson Qin, Mali Akmanalp,
Sophie Hilgard, Andrew Ross, James Lennon, Varun
Jain, Harshita Gupta, David Li, et al. Design continuums
and the path toward self-designing key-value stores that
know and learn. In Biennial Conference on Innovative
Data Systems Research (CIDR), 2019.

[13] Wook-Hee Kim, Beomseo Nam, Dongil Park, and Youji
Won. Resolving journaling of journal anomaly in an-
droid i/o: multi-version b-tree with lazy split. In Pro-
ceedings of the 12th USENIX Conference on File and
Storage Technologies (FAST), pages 273–285, 2014.

[14] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, An-
drea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau.
Wisckey: separating keys from values in ssd-conscious
storage. In Proceedings of the 14th USENIX Confer-
ence on File and Storage Technologies (FAST), pages
133–148, 2016.

[15] Chen Luo and Michael J. Carey. Lsm-based storage
techniques: A survey. CoRR, abs/1812.07527, 2018.

[16] Michael Mitzenmacher and Eli Upfal. Probability and
computing: Randomized algorithms and probabilistic
analysis. Cambridge university press, 2005.

[17] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Eliz-
abeth O’Neil. The log-structured merge-tree (lsm-tree).
Acta Informatica, 33(4):351–385, 1996.

[18] Martin Raab and Angelika Steger. Balls into bins—a
simple and tight analysis. In International Workshop
on Randomization and Approximation Techniques in
Computer Science, pages 159–170. Springer, 1998.

[19] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram,
and Ittai Abraham. Pebblesdb: Building key-value stores
using fragmented log-structured merge trees. In Pro-
ceedings of the 26th Symposium on Operating Systems
Principles (SOSP), pages 497–514. ACM, 2017.

[20] Ohad Rodeh, Josef Bacik, and Chris Mason. Btrfs: The
linux b-tree filesystem. ACM Transactions on Storage
(TOS), 9(3):9, 2013.

	Introduction
	Background
	LSM-Tree Merge and Trade-Offs
	Copy-On-Write B+-Tree

	Jungle: Planting LSM-Tree and Copy-On-Write B+-Tree Together
	Evaluation
	Conclusion

